Noncovalent assembly of targeted carbon nanovectors enables synergistic drug and radiation cancer therapy in vivo.

نویسندگان

  • Daisuke Sano
  • Jacob M Berlin
  • Tam T Pham
  • Daniela C Marcano
  • David R Valdecanas
  • Ge Zhou
  • Luka Milas
  • Jeffrey N Myers
  • James M Tour
چکیده

Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off-target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. In an in vitro system, we previously demonstrated that targeted drug delivery to cancer cells overexpressing epidermal growth factor receptor (EGFR+) can be achieved by poly(ethylene glycol)-functionalized carbon nanovectors simply mixed with a drug, paclitaxel, and an antibody that binds to the epidermal growth factor receptor, cetuximab. This construct is unusual in that all three components are assembled through noncovalent interactions. Here we show that this same construct is effective in vivo, enhancing radiotherapy of EGFR+ tumors. This targeted nanovector system has the potential to be a new therapy for head and neck squamous cell carcinomas, deserving of further preclinical development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systemic Targeted Alpha Radiotherapy for Cancer

Background: The fundamental principles of internal targeted alpha therapy for cancer were established many decades ago.The high linear energy transfer (LET) of alpha radiation to the targeted cancer cellscauses double strand breaks in DNA. At the same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and ch...

متن کامل

Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells

Background: Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to e...

متن کامل

A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery

First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...

متن کامل

Carbon Nanotubes as Near Infrared Radiation (NIR) Molecules for Cancer treatment

Introduction: The photo-thermal therapy by nanoparticles has been recently known as an efficient strategy for the cancer treatment. Carbon nanotubes (CNTs) have been extensively studied in biomedical application due to the easy uptake and high permeability in the cells, biocompatibility in biological environments and also their unique electrical, thermal properties. They genera...

متن کامل

Synergistic Effects of Arsenic Trioxide and Radiation: Triggering the Intrinsic Pathway of Apoptosis

Background: Arsenic trioxide (ATO) has been reported as an effective anti-cancer and a US Food and Drug Administration (FDA) approved drug for treatment of some cancers. The aim of this study is to determine the underlying apoptosis molecular and cellular mechanisms of ATO in the presence or absence of ionizing radiation (IR) in vitro in the glioblastoma multiforme (GBM) cell line, U87MG. Metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 2012